M2REAL FOCUS

La diversité culturelle dans les représentations mathématiques.

A travers cette communication, les auteurs se proposent de montrer comment les représentations socioculturelles exercent une influence non négligeable sur l’intégration des étudiants originaire d’Amérique Latine dans les cours de mathématiques des écoles d’ingénieurs françaises. Leur analyse s’appuie essentiellement sur une enquête en cours de dépouillement, qui vient d’être menée à l’INSA de Lyon auprès d’une population de 130 étudiants français et latino-américains en cours de formation dans la filière internationale de premier cycle « Amerinsa ».

QUI SOMMES-NOUS?

Les mathématiques de nos jours se développent considérablement, du fait de leurs interactions avec les autres disciplines et de leurs propres interactions internes, de telle sorte que si elles intéressent toujours autant la communauté scientifique, elles sont loin d’être désormais l’affaire des seuls mathématiciens. Dans ce monde complexe et toujours plus incertain qui est le nôtre, les vieux débats entre « mathématiques pures » et « appliquées » semblent avoir cédé la place à une approche beaucoup plus ouverte tendant à considérer l’ensemble des « sciences mathématiques » dans la variété de leurs acteurs et de leurs utilisateurs.

En réponse à la question à la fois essentielle et toujours problématique : « à quoi servent les mathématiques ? », il est encore fréquent d’entendre, outre les habituelles références aux applications de celles-ci dans les autres disciplines telles que la physique, la chimie, la mécanique, l’économie, l’informatique, la biologie ou les sciences de l’ingénieur, qu’elles contribuent, plus que toute autre activité humaine, à la formation de l’esprit scientifique.

En ce qui concerne la finalité des mathématiques dans la formation des ingénieurs, notre approche ne peut négliger par ailleurs cette perspective janusienne qui nous permet de regarder vers le passé tout en restant tournés vers l’avenir. [2] Tout en gardant à l’esprit l’idée que, au moins depuis Descartes, l’évolution du métier d’ingénieur doit être systématiquement mise en parallèle avec celle des sciences et des techniques, il est nécessaire de prendre en compte également les nouveaux enjeux technologiques et sociétaux [3] dont la complexité croissante ne devrait pas constituer un frein mais au contraire un stimulant pour les chercheurs et les éducateurs.

Si nous associons à présent ces réflexions de base aux notions de culture et de représentation, voire d’interculturalité, nous arrivons de plain-pied dans le contexte des filières internationales de formation d’ingénieurs [4] qui constituent à la fois le déclencheur et le moteur de notre analyse, son champ d’expérimentation et d’application, le réceptacle et le conduit à partir duquel nous essaierons d’observer, d’échanger et de débattre afin d’éclairer — et peut-être d’infléchir un jour — les dispositifs pédagogiques mis en place.

Les Grandes Ecoles et les Universités européennes ont toutes pour ambition actuellement de développer la mobilité internationale de leurs étudiants, enseignants et chercheurs, et d’accroître de façon significative leur proportion d’étudiants étrangers, la coopération internationale étant devenue un élément stratégique dans le développement de l’enseignement supérieur et de la recherche. Tout en participant à des réseaux de mobilité de plus en plus complexes, elles développent aussi depuis quelques années sur leurs campus, ou même en délocalisant leurs structures à l’étranger, de véritables programmes multiculturels conçus pour des étudiants provenant d’horizons très différents et qui suscitent la mise en place de nouvelles approches de formation. C’est le cas des filières internationales de premier cycle des Instituts Nationaux des Sciences Appliquées à Lyon, Rennes, Rouen ou Toulouse, du cycle international CHEM.I.ST de la Fédération Gay Lussac à Clermont-Ferrand, Lille ou Rennes, de l’Ecole Centrale de Pékin en Chine ou du programme PFIEV de formation d’ingénieurs d’excellence au Vietnam, pour ne citer que ces quelques exemples français.

Aujourd’hui, lorsqu’ils s’interrogent sur leurs activités pédagogiques, les enseignants de mathématiques de ces établissements disposent d’importantes ressources bibliographiques et d’outils didactiques de plus en plus performants leur permettant d’enrichir leurs méthodes de travail et de réfléchir sur l’acte même d’enseignement. Cependant, on oublie trop souvent encore que l’élève ne vit pas dans un vide social, et qu’à ce titre, il est toujours pertinent de questionner le rapport entre science et société. [5] Dans les filières internationales, la dimension culturelle, même lorsqu’il s’agit de mathématiques, ne devrait-elle pas, elle aussi, faire l’objet de traitements pédagogiques spécifiques ? L’hétérogénéité des étudiants d’emblée suscite de multiples problèmes, de communication d’abord, d’interprétation des mots et des connecteurs logiques certes, mais aussi des connotations, des attitudes, des valeurs, des symboles ; des difficultés qui viennent s’ajouter ensuite aux contraintes inhérentes à l’acquisition des concepts et des démarches intellectuelles nécessaires en mathématiques dans le cadre de l’enseignement supérieur.

À travers cette communication, nous nous proposons de montrer comment les représentations socioculturelles exercent une influence non négligeable sur l’intégration des étudiants originaires d’Amérique Latine dans les cours de mathématiques des écoles d’ingénieurs françaises. Notre analyse s’appuiera essentiellement sur une enquête que nous venons de mener à l’INSA de Lyon auprès d’une population de 130 étudiants français et latino-américains en cours de formation dans la filière internationale de premier cycle « Amerinsa ».

Conscients des complications d’ordre méthodologique qui pouvaient être les nôtres, mais nous risquant tout de même au-delà des limites de nos champs disciplinaires, nous avons associé nos expériences respectives dans le domaine des mathématiques (Christiane Dujet-Sayyed), de la psychologie cognitive (Chantal Pangaud), des langues et des cultures ibériques et latino-américaines (Enrique Sánchez Albarracín) afin d’élaborer un questionnaire nous permettant de vérifier la pertinence de nos hypothèses de travail tout en suscitant des réponses ouvertes de la part des étudiants, qui nous permettront de dégager finalement de nouvelles pistes de réflexion et de débat.

Limites et obstacles méthodologiques et épistémologiques
Notre approche ne pourra éviter cependant quelques écueils inéluctables, découlant de la nature même de notre démarche, de la fusion et confusion de méthodes et perspectives qu’elle engendre, du matériau humain et intrinsèquement complexe sur lequel se porte notre observation.
Il y a d’abord la polysémie des mots, qui complique d’autant plus les choses que l’on aborde ici à la fois des questions de langue et de langage mathématique. Le terme « représentations », par exemple, peut signifier : soit une forme de traduction de la pensée par des relations de correspondance (concepts, images, règles…) ; soit la traduction par des signes d’une réalité physique ou conceptuelle (celle-ci pouvant également devenir symbolique) ; soit, en mathématiques, une fonction définie sur un groupe et à valeurs dans un espace d’applications linéaires (cf. théorie des représentations) ou plus généralement une mise en correspondance de deux concepts jugés mathématiquement équivalents.

Il y a souvent aussi en linguistique des questions d’échelle. Ainsi le mot « culture » peut être considéré au sens large englobant d’innombrables acceptions, sur un plan collectif, se référant à des structures, des comportements, des manifestations, des ensembles sociaux ou à un niveau individuel exprimant l’ensemble des connaissances acquises par une personne, son instruction ou son savoir.

Par ailleurs, la notion philosophique de culture, dont le développement historique coïncide avec celui des sciences sociales et de l’expansion coloniale de l’Occident au XIXe siècle, ne pose pas que des problèmes d’ordre axiologique. Est-il vraiment possible en effet de parler de culture dans le cadre d’une culture, ou, en d’autres termes, comment analyser un système lorsqu’on se trouve à l’intérieur du système ? En nous distanciant de l’autre, de l’étranger, par rapport à nous-mêmes, à notre système, sommes-nous véritablement capable d’objectivation ? Comment prendre en compte le collectif, d’autre part, sans ignorer le singulier ?

Si la distinction entre étudiants français et étudiants étrangers peut poser problème, que dire des confusions dangereuses que peut engendrer le regroupement d’élèves mexicains, salvadoriens, honduriens, vénézuéliens, péruviens, boliviens, argentins, chiliens, uruguayens et brésiliens sous ce seul, complexe et incertain dénominateur commun que constitue l’Amérique Latine ? Qu’est-ce qui nous permet de penser en effet qu’un élève originaire de Curitiba au Brésil partage davantage de points communs avec un étudiant de Tegucigalpa au Honduras qu’avec un jeune Français de Lyon ou de Rennes ? Depuis des décennies, les principaux spécialistes de la question s’accordent à répéter qu’on ne peut plus envisager l’Amérique Latine comme une entité géographique, historique, sociale ou culturelle homogène. [6] Les pays organisés à l’intérieur de cet ensemble continental ne constituent pas toujours eux-mêmes des ensembles réguliers et uniformes et il semble logique, par exemple, que le vécu d’un étudiant issu d’une grande métropole telle que São Paulo ou Mexico ne soit pas tout à fait le même que celui d’un élève provenant d’une zone rurale.

Quel que soit le degré de complexité au niveau duquel on voudra bien se situer, la culture apparaît le plus souvent comme un « construit », c’est-à-dire le résultat d’un processus historique et social ancré dans un contexte. La démarche mathématique et scientifique en revanche, semble demander au sujet d’effectuer en premier lieu une série de déconstructions, langagières d’abord, logiques ensuite, opérant une « conversion » au sens bachelardien du terme que d’aucuns considèrent comme un véritable renoncement à soi-même. [7] Le prix à payer étant la perte de « sens commun » éminemment préjudiciable dans les apprentissages mathématiques où une logique « naturelle » devrait rester sous-jacente. Dans quelle mesure ces déconstructions peuvent-elles être influencées par des facteurs socioculturels d’autant plus complexes que les étudiants considérés se trouvent, en outre, dans un contexte de déracinement, dont la durée et l’importance s’inscrivent sur des échelles difficilement mesurables ?

Rappelons finalement les limites imposées par notre champ d’expérimentation à la fois relativement restreint ici (130 individus concernés [8]) et très spécifique (élèves internationaux de premier cycle ingénieur) voire atypique. Celles-ci devraient nous interdire logiquement toute généralisation hasardeuse tout en nous encourageant à poursuivre peut-être notre démarche en affinant par la suite nos critères et en élargissant le public considéré.


Antécédents, motifs, et élaboration de l’enquête
L’enquête qui est à la base de cette réflexion n’est pas le produit d’une initiative spontanée de notre part. Elle est la conséquence d’une série de réflexions pédagogiques menées dans la filière AMERINSA de l’INSA de Lyon, notamment à partir des difficultés rencontrées par certains étudiants venus d’Amérique Latine pour s’adapter aux études en France, difficultés accrues par des différences de forme comme de fond existant dans l’enseignement des mathématiques au lycée et dans les premiers cycles de formations d’ingénieurs et qui font de cette discipline la pierre d’achoppement des élèves-ingénieurs.

Ces réflexions menées dans un contexte de coopération académique avec certains établissements d’enseignement secondaire et supérieur mexicains, argentins et brésiliens [9] ont suscité la mise en marche en 2005 d’un important projet de collaboration entre la France et l’Amérique Latine, « Mathématiques pour l’Ingénieur » (PMI) dont l’objectif est de contribuer aux développements et avancées de la réflexion sur la place et le rôle des mathématiques dans la formation des ingénieurs face aux nouveaux enjeux de la société postmoderne, issus du développement de nouvelles technologies de plus en plus sophistiquées, dans un monde de complexité croissante et de compétitivité accrue.
Le projet PMI a donné naissance à son tour en septembre 2007 à M²Real , un groupe de recherche sur le rôle et la place des mathématiques dans les sciences de l’ingénieur, la modélisation et les sciences humaines et sociales. Le nom M²Real se rapporte à l’appellation en espagnol Matemáticas del Mundo Real et en portugais Matemáticas do Mundo Real ; il joue sur les associations concrètes, imaginaires et symboliques (carrés ou réels des mathématiques et des sciences humaines), fait référence au monde réel d’Edgar Morin et souligne l’existence du réseau « Europe-Amérique Latine » qui se développe autour de cette thématique. [10]

Le groupe a pour mission de conduire, en prenant en considération les nouveaux enjeux techniques et sociétaux, des recherches pluridisciplinaires et internationales sur les liens entre les mathématiques et le social, qui permettent d’aborder de façon concrète le travail de l’ingénieur ; sur les relations entre la modélisation et la conception en ingénierie, afin de déterminer plus finement le rôle des mathématiques dans le travail de l’ingénieur ; sur les rapports entre théories et pratiques, dans un contexte d’interdisciplinarité et de complexité ; sur les champs culturels, ethnologiques et linguistiques d’appropriation et de transmission des savoirs mathématiques pour l’ingénieur ; et sur les relations, finalement, entre la didactique des mathématiques et les mathématiques pour l’ingénieur.

Parmi les hypothèses de travail qui ont guidé l’élaboration du questionnaire on peut citer en premier lieu l’approche de Jacques Nimier, mathématicien et professeur de psychologie clinique à l’Université de Reims, pour qui l’objet mathématique est toujours "investi" par un imaginaire personnel et social qui entraîne diverses représentations des mathématiques chez les élèves, les enseignants et les chercheurs. La présence constante de cet imaginaire a des conséquences considérables, selon lui, sur les difficultés rencontrées par les élèves dans cette discipline et sur le choix de leur orientation professionnelle. Nimier considère qu’il est donc essentiel pour un professeur de prendre conscience de cette dimension dans son enseignement, dans sa compréhension des échecs et dans la « rééducation » de cette discipline. [11]
Une autre hypothèse postule que les étudiants latino-américains à l’étude, sur la base d’un apprentissage des mathématiques durant leur scolarité antérieure de type plutôt calculatoire et utilitaire, ne valorisant pas les apprentissages logico-structurels ont peut-être, pour l’appréhension des concepts mathématiques, des exigences plus marquées vis-à-vis d’un ancrage dans des références à des objets du monde concret, les idéalités mathématiques leur demandant des renvois spécifiques à des objets simplifiés que l’on peut mettre en relation avec ceux du monde tangible, du monde de la perception.

Un autre présupposé concerne les contextes économiques et sociaux des pays en voie de développement ou émergents qui plongent davantage les sociétés et leurs individus dans une culture de l’utilité (immédiate). Cette idée semble d’autant plus prégnante concernant l’Amérique Latine que l’histoire culturelle et éducative de cette région a été profondément marquée depuis le XIXe siècle et jusqu’à nos jours par les influences croisées et successives du positivisme, de l’utilitarisme [12] ou du pragmatisme, par exemple dont on ne cesse d’évoquer aujourd’hui la résurgence sur le plan politique et économique. [13]
Malgré les réserves exprimées en préambule sur l’existence d’une communauté « latino-américaine » partageant des référents socioculturels clairement identifiables, nous avons supposé pour ce travail qu’une élaboration particulière du formulaire distribué aux étudiants nous permettrait d’obtenir des réponses sensiblement différentes entre les Français et les Latino-américains. C’est l’expérience pédagogique de la filière AMERINSA mais aussi l’analyse des contributions écrites et des débats entre professeurs français et mexicains organisés à l’INSA de Lyon en 2005 et 2006 dans le cadre du projet PMI qui motivent cette conjecture. Celles-ci ont fait apparaître en particulier des divergences significatives dans l’évaluation des rapports entre mathématiques et société. Elles nous ont conduits également à penser que des différences importantes subsistaient concernant la vision du rôle et des fonctions de l’ingénieur.

Finalement, notre expérience conjointe de la psychologie cognitive et de l’enseignement de même que les témoignages de nos étudiants au fil des années [14] nous ont inspiré l’idée que des facteurs affectifs liés au vécu personnel de chacun des étudiants pouvaient avoir des incidences sur leurs réponses.

C’est pourquoi nous avons organisé l’enquête autour de quatre thématiques susceptibles de dégager plus ou moins d’interdépendance et de relation de causalité dans les réponses : les représentations des mathématiques comme discipline et dans leur rapport avec le réel, avec un positionnement possible du répondant entre deux points de vues antagonistes ; le métier d’ingénieur et son rôle ; l’enseignement des mathématiques en école d’ingénieur ; le rapport personnel du répondant avec les mathématiques, les aspects de l’expérience et du vécu personnel.
Chacun de ces quatre domaines nous semblait pouvoir être influencé par des représentations culturelles distinctes, liées notamment à l’histoire des sociétés européennes et latino-américaines et aux influences croisées de courants de pensée, souvent divergents (pragmatisme, empirisme, arielisme, positivisme, relativisme, théoricisme, structuralisme…) et dont les interactions en France et en Amérique Latine ont eu des retentissements notables sur les programmes de mathématiques de l’enseignement secondaire et supérieur et dans l’organisation des formations d’ingénieurs.

Les questions du formulaire soumises aux étudiants ont été finalement posées sur différents modes.
Les questions ouvertes, difficiles à analyser sur un plan statistique, devaient nous permettre néanmoins d’identifier des représentations, des croyances et d’apporter éventuellement de nouvelles pistes ne figurant pas dans les hypothèses de travail.

C’était aussi l’objectif des associations de mots qui devaient faire l’objet de réponses spontanées de la part des élèves.
Dans les questions fermées qui laissent évidemment moins de place à la spontanéité, nous avons choisi d’évaluer la prégnance de la représentation en demandant aux élèves d’ordonner les propositions par ordre de préférence.
Les questions à choix simple ou multiple, parce qu’elles permettaient de placer les répondants en position de dilemme, pouvait les confronter à des réponses auxquelles ils n’auraient pas forcément pensé afin d’étayer leur réflexion. Nous avons privilégié ainsi les échelles permettant de mesurer le degré d’accord ou de désaccord des étudiants et de calculer ensuite les écarts-types à partir desquels il serait possible d’évaluer les consensus et les divergences entre les deux populations comparées.
Après chaque liste de questions nous souhaitions vérifier quelles étaient les plus proches ou les plus éloignées des préoccupations des répondants. C’est pourquoi nous leur avons demandé de classer à chaque fois les 5 propositions qui traduisaient le plus leur pensée et les 5 propositions qui s’en écartaient le plus.
Nous avons finalement laissé une place importante aux commentaires dont l’étendue, très variable, a été de quelques lignes pour les moins prolixes à plus d’une page pour certains étudiants.
Comme nous cherchions à obtenir des réponses personnelles et spontanées, aucune explication préalable n’a été donnée aux répondants sur la nature et les motifs de l’enquête.


Exploitations préliminaires du questionnaire : interprétations linguistiques et impressions d’ensemble
Un certain mystère planait le 12 mars 2008 sur l’amphithéâtre au nom emblématique « Turing » où les étudiants de première et deuxième années de la filière de premier cycle ingénieur AMERINSA ont été convoqués pour un cours de mathématiques très particulier. Habitués aux interrogations ou devoirs impromptus, ils ont semblé pour le moins étonnés lorsqu’on leur a distribué un document de 9 pages, contenant seulement quelques formules ou représentations géométriques élémentaires et une longue série de questions inhabituelles. Ils se sont montrés en revanche bien plus surpris lorsqu’ils ont compris que ce « travail » ne serait pas noté et que tous les questionnaires étaient anonymes.

Le temps de réponse a été très variable : les étudiants les plus rapides ont rempli le formulaire en 45 minutes, les plus lents ont tardé presque deux heures. Il a fallu beaucoup plus de temps aux élèves latino-américains (notamment en première année) pour lire et comprendre les questions qui étaient posées. Il faut dire que certains d’entre eux n’avaient découvert la langue française que depuis quelques mois.

En première année le niveau de français de la plupart des étudiants latino-américains à la fin du premier semestre d’études se situe entre le pallier B1, défini comme le « niveau seuil » par le Cadre européen commun de référence pour les langues et le niveau B2, considéré déjà comme un « niveau avancé ou indépendant ». C’est-à-dire que si ces élèves sont déjà en mesure de communiquer avec un certain degré de spontanéité et d’aisance dans le cadre de conversations informelles, en revanche il n’est pas toujours facile pour eux de rédiger ou de comprendre dans les détails des textes complexes sur des sujets concrets ou abstraits. [15]

En lisant le questionnaire, les étudiants latino-américains ont souvent trébuché, malgré tout, sur des mots d’usage courant, comme « dégourdi » par exemple, dont la transposition n’est pas toujours aisée en espagnol ni en portugais.
S’il existe des traductions standard dans les dictionnaires bilingues telles que « astucioso » ou « destro » en portugais, ou « espabilado » en espagnol, celles-ci ne sont pas toujours comprises par les élèves qui emploient des termes empruntés à des registres linguistiques nationaux (portugais du Brésil ou espagnol du Mexique) soumis parfois à d’importantes influences locales ou régionales. Ainsi les Brésiliens ont fini par comprendre après quelques explications que « dégourdi » signifiaient pour eux « esperto » et les Hispaniques que cela pouvait vouloir dire « vivo », « listo » ou « avispado ». Ces obstacles linguistiques ne sont pas anodins. Ils auront des conséquences certaines sur l’interprétation de l’enquête. On observe, pour garder le même exemple, de grosses variations dans les réponses concernant la question qui contenait le terme « dégourdi » au sein de la population latino-américaine et des divergences significatives sur cet item entre les deux communautés comparées. [16] Cette différence est d’autant plus pertinente qu’elle s’inscrit dans une série de propositions à travers lesquelles nous essayons de vérifier une hypothèse implicite : celle que le rapport des mathématiques au réel est plus tangible en Amérique Latine.

La plus grande partie des étudiants, même les Français, ne connaissaient pas le sens du mot « vernaculaire ». Le terme a été expliqué et traduit. Mais peut-on être vraiment sûrs que l’affirmation sur laquelle devaient se prononcer les répondants ait été bien comprise ? Il s’agissait de la proposition suivante : « Les mots de la langue vernaculaire ont le même sens quand ils figurent dans un énoncé mathématique et dans leur emploi au quotidien ». Cette phrase peut-être considérée comme une constatation ou comme une assertion. Quoi qu’il en soit elle fait référence à une question fondamentale qui interroge à nouveau les rapports entre mathématiques et linguistique et qui n’est pas sans conséquences sur les problèmes d’apprentissage. On le répète souvent, en mathématiques, tout apprenti est confronté avant tout à un discours. [17] Celui-ci, a-t-on l’habitude de dire aussi, s’alimente de la langue naturelle mais en restreint les différentes acceptions pour garantir une compréhension mutuelle entre scientifiques, compréhension s’appuyant elle-même sur une logique particulière différente de la logique de « sens commun » que l’on trouve dans le discours quotidien.
Cette dernière idée, généralisée dans certains milieux de la didactique et de la psychologie cognitive est remise en cause aujourd’hui par de nombreux spécialistes, comme Viviane Durand-Guerrier qui, après avoir revisité les textes fondateurs de la logique classique d’Aristote à Quine, en passant par Frege, Russell, Wittgenstein et Tarski, invite à présent les professeurs de mathématiques à s’interroger sur la pertinence des outils logiques qu’ils mettent en œuvre dans leur propre pratique d’enseignants. Il faut préconiser des apprentissages tirant leur force pédagogique de leur ancrage dans une logique de « sens commun ». [18] Les logiciens ont d’ailleurs eux-mêmes, à partir des années 60, produit des systèmes logiques en meilleur adéquation avec le réel, tels que les « logiques naturelles » de Gentzen, la « logique floue » de Zadeh, la logique paraconsistante de Dacosta…
On le voit bien, la simple lecture et interprétation du questionnaire suscite déjà des variations importantes dans les réponses et dont il faudra d’autant plus tenir compte qu’elles interfèrent directement dans la nature et les objectifs de l’enquête.

L’analyse de la perception générale des répondants, notamment à partir des deux questions finales et des commentaires personnels rédigés librement sur la dernière page, montre que les étudiants sont assez contents de voir qu’on leur demande leur avis et qu’ils ont une vision très positive de cette enquête. Certains d’entre eux considèrent que ce type d’initiative peut déboucher sur une amélioration des enseignements à l’INSA de Lyon. C’est la même constatation qui avait été faite par les enseignants lors des « Etats Généraux » de la filière Amerinsa, des rencontres organisées une fois par an, justement pour donner la parole aux étudiants le plus librement possible.
En général, dans les cours et même dans les travaux dirigés, la plus grande partie du temps de communication orale est occupée par le professeur. C’est la parole de l’enseignant qui est mise constamment au premier plan parce qu’elle est censée transmettre des savoirs. Certains professeurs d’ailleurs ont parfois l’impression que donner la parole aux élèves est une perte de temps puisque cette activité entame la durée consacrée à la transmission du cours. Des échanges inopinés s’opèrent malgré tout de temps en temps, souvent en dehors de l’enceinte du cours, à la sauvette dans les couloirs de l’établissement, ou dans les bureaux des responsables pédagogiques lors d’entretiens personnalisés accordés à des élèves en difficulté.
Tous les commentaires des étudiants latino-américains à ce sujet (recensés également dans les devoirs qu’ils rédigent dans le cadre des cours de langues et humanités) révèlent qu’il existe de grandes différences entre la France et l’Amérique Latine dans les relations qui s’établissent entre les élèves et les professeurs, aussi bien à l’intérieur qu’à l’extérieur des cours. L’enseignant latino-américain semble être davantage descendu de son estrade pour se placer au centre de l’espace, au milieu des élèves, agissant plutôt comme l’animateur d’un groupe organisé autour de projets pédagogiques particuliers que comme un conférencier. En dehors des cours, les relations entre professeurs et élèves sont beaucoup plus fréquentes qu’en France et souvent franchement amicales.
C’est pourquoi les étudiants originaires d’Amérique Latine sont souvent très déçus au début de leur formation de l’insuffisance des échanges humains et de la verticalité excessive des rapports d’enseignement. [19] L’expérience par ailleurs montre qu’ils sont toujours très réceptifs lorsqu’on leur donne ouvertement la parole.
C’est pourquoi il est intéressant de remarquer à ce stade que les questions posées dans le questionnaire semblent globalement plus proches des préoccupations des étudiants latino-américains que de celles des Français. [20]
L’expérience de déracinement et d’intégration dans un nouveau pays et dans un nouveau système de formation explique très certainement en grande partie le fait que ces étudiants se posent actuellement beaucoup plus de questions sur leur existence et sur leur formation. Au Mexique on vit presque au jour le jour, observe par exemple Anaïs, une élève originaire de Oaxaca, demain on verra bien… on ne fait pas de projets à long terme. En France, les jeunes veulent commencer leur vie dans un environnement tranquille et confortable et à 20 ans ils pensent déjà à leur retraite. [21]
Pour moi, reconnaît Damián, étudiant argentin de la filière Amerinsa, sortir de Buenos Aires pour revoir mon cadre de vie depuis une autre perspective et pouvoir le comparer avec un autre contexte, français en l’occurrence, est une expérience enrichissante à tout point de vue. Inutile de dire que de même l’on a une autre perspective du lieu où l’on a vécu, l’analyse que l’on fait de soi-même change aussi. Voilà pourquoi ces quatre mois passés [en France], me paraissent des années, en raison de tout ce que j’ai vécu et appris, et ils me font sentir bien loin de chez moi, bien loin du mois d’août [date du départ en France]. [22]
Au Mexique, se désole Heira, le temps libre des étudiants est beaucoup plus long qu’en France où les cours se terminent à 18 heures et comme il n’est pas habitué à cet horaire, la fatigue est beaucoup plus grande pour un étudiant mexicain que pour un Français, habitué à ce rythme de travail. Ceci fait qu’il est beaucoup plus difficile pour nous d’avoir des heures d’étude de qualité après les cours, ce qui est très important pour l’apprentissage dans le système français. [23]

Pratiques d’enseignement, ingénieurs et représentations mathématiques
Alors que les mathématiques sont de plus en plus présentes dans les sciences et dans la société, leur enseignement est souvent remis en cause aujourd’hui : on dénonce encore fréquemment leur aridité ou leur rôle excessivement sélectif auquel on attribue un pouvoir tyrannique. Dans les formations d’ingénieurs françaises, même si les enseignements de mathématiques semblent bénéficier d’un volume d’heures globalement conséquent, [24] leur nature, contenus ou finalités sont régulièrement controversés. Notre enquête montre que les étudiants de première et deuxième années de la filière internationale Amerinsa, toutes nationalités confondues, jugent que l’enseignement est trop abstrait dans l’ensemble. On développe beaucoup de choses qui sont inutiles pour le métier d’ingénieur, regrette une élève, et qu’on ne retrouve dans aucun département de spécialité. En revanche, on ne fait pas les choses pratiques qu’il faut savoir en département, il y a [donc] une grande perte de temps.
Ce sentiment est partagé par le Bureau National des Elèves Ingénieurs de France (BNEI) qui lors d’une réunion récente avec des responsables de la Commission du titre d’Ingénieur (CTI) et de la Société de Mathématiques Appliquées et Industrielles (SMAI) a manifesté que les mathématiques enseignées en écoles d’ingénieurs étaient trop souvent théoriques, que les élèves les considéraient, en général, comme étant en inadéquation avec leurs enseignements parce qu’ils ne voyaient pas suffisamment l’intérêt des mathématiques dans une formation hautement professionnalisante. [25]
Lorsqu’on demande cependant aux étudiants de la filière AMERINSA ce que leur inspire le terme « mathématiques », on observe que pour les Français, les 3 mots les plus souvent cités sont « logique », « raisonnement » et « abstraction » tandis que les Latino-américains préfèrent mentionner d’abord le mot « outil ». Si l’on faisait plus d’applications [en cours], dit l’un d’entre eux, cela serait plus intéressant et donc attractif pour les études d’ingénieur. L’enseignement des maths à l’INSA, c’est un peu trop abstrait, écrit un autre élève, un peu plus d’applications numériques ou d’exemples d’applications dans le métier d’ingénieur seraient bienvenus.
Mais observons de plus près les similitudes et les écarts dans les réponses entre les deux communautés à l’étude à partir des résultats suivants :

FRANÇAIS LATINO-AMÉRICAINS 1. L’enseignement en France est trop axé sur les mathématiques pures (Moyenne) 2.31 +/- 1.57 (Ecart-type) (Moyenne) 3.63 +/- 1.18 (Ecart-type) 2. Les mathématiques prennent trop de place dans la formation de l’ingénieur 1.91 +/- 1.38 2.79 +/- 1.24 3. L’objet des mathématiques n’est pas réel 3.06 +/- 1.32 1.71 +/- 1.35 4. Les maths sont une affaire d’experts, d’initiés 2.83 +/- 1.40 1.51 +/- 1.40 5.Les maths sont absurdes, elles n’ont pas de sens dans le monde réel, ne représentent rien de réel, ne peuvent pas faire l’objet d’une discussion entre personnes (contrairement par exemple à la littérature ou la philosophie) 1.33 +/- 1.59 0.37 +/- 0.73 6. Le cours de maths est pour moi comme une récréation, un loisir… 1.05 +/- 1.33 2.5 +/- 1.66 7. J’ai toujours accordé le plus d’importance aux mathématiques durant mes études 2.17 +/- 1.42 3.26 +/- 1.27 8. J’ai toujours admiré mes profs de mathématiques 1.97 +/- 1.70 3.03 +/- 1.56

Sur l’ensemble des propositions analysées ci-dessus, les consensus sont relativement forts à l’intérieur de chaque groupe considéré (écarts-types ≤1,70). On le voit, bien les élèves originaires d’Amérique Latine, contrairement aux Français, considèrent que l’enseignement qu’on leur propose dans la filière est excessivement théorique et que les mathématiques occupent trop de place dans la formation (les deux premiers items du tableau). À l’inverse des Français, ils semblent considérer qu’il existe un rapport important entre les mathématiques et le réel et que, par conséquent, elles ne sont pas réservées seulement à des experts (mathématiciens) puisqu’elles sont ancrées dans le quotidien (items 3,4,5).
On a besoin des maths au moins une fois chaque jour, commente l’un deux. Elles sont nécessaires aux ingénieurs, aux mathématiciens et aux philosophes, dit un autre élève, mais aussi aux petits, aux grands, aux élèves ou encore lors de la conception d’un immeuble, pour calculer la force maximale qui peut être soumise à une poutre, et aussi à toute personne qui a besoin de faire des calculs quels qu’ils soient. Il peut paraître surprenant de constater que ce sont aussi les étudiants latino-américains qui estiment avoir un meilleur rapport aux mathématiques (items 6,7,8).
D’autres réponses dans le questionnaire corroborent ces indications. Il leur est arrivé plus souvent que les Français dans le passé, par exemple, de faire régulièrement des mathématiques pour le plaisir (70% eux, d’entre 44% pour les Français) et cela se produit encore aujourd’hui (40% pour les Latinos, 22% pour les Français) malgré les difficultés croissantes des études d’ingénieur et le stress ou les déceptions qui en découlent, car, comme l’avouent les 2/3 des élèves, quelle que soit leur nationalité, l’INSA a bouleversé leur rapport affectif aux mathématiques.

Considérons à présent une autre série de propositions, celles qui concernent les représentations que les étudiants ont de l’ingénieur. Les items qui semblent traduire le plus la pensée des élèves sont les suivants :
FRANÇAIS LATINO-AMÉRICAINS L’ingénieur doit être imaginatif, créatif (20 sur 36) Un bon ingénieur doit avoir l’esprit pratique (24/36)

Un bon ingénieur doit avoir des connaissances théoriques (17 / 36) L’ingénieur doit être imaginatif, créatif (24/36)

Un bon ingénieur doit avoir l’esprit pratique (17/ 36) L’ingénieur doit être ingénieux avant tout (17/36)

L’ingénieur doit être méthodique (16 / 36) L’ingénieur doit être méthodique (15/36)

L’ingénieur doit être rigoureux (16 / 36) L’ingénieur doit être d’abord logique (15/36)

S’il se dégage davantage de convergence en ce qui concerne l’ingénieur, on observe que les Latino-Américains placent au premier plan l’esprit pratique, la créativité et l’ingéniosité tandis que les Français mettent en avant l’imagination, la création mais aussi les connaissances théoriques et la rigueur. Lorsqu’on demande aux étudiants ce que leur inspire le terme « ingénieur », on note que pour les Latino-américains les mots les plus souvent évoqués sont « créativité » (44% des répondants), « pratique » (41%), « résolution de problème » (30%) et « logique » (25%), tandis que les Français préfèrent indiquer d’abord les mots « sciences » (22%), « responsabilités »(22%) et « meneur »(22%). Contrairement aux Latino-américains, les Français ne citent jamais les mots « maths » ou « logique ». Mais de quelles mathématiques s’agit-il vraiment ? Je voudrais faire des maths plus appliquées, explique un élève, car je voudrais devenir ingénieur et pour lui c’est plus utile.
Deux autres items montrent une différence certaine entre les deux groupes :

FRANÇAIS LATINO-AMÉRICAINS L’ingénieur n’a pas que des problèmes techniques à résoudre (Moyenne) 3.33 +/- 1.72 (Ecart-type) (Moyenne) 2.25 +/- 1.95 (Ecart-type) Le mot "ingénieur" n’a pas de sens s’il n’est pas complété par d’autres termes 3.56 +/- 1.38 1.65 +/- 1.49

Les Latino-américains qui associent plus volontiers que les autres le terme « ingénieur » à un métier ou une fonction (73%) semblent considérer que le mot se suffit à lui-même et qu’il concerne un professionnel dont le travail consiste surtout à résoudre des problèmes techniques. Le mot « équipe » n’apparaît qu’une seule fois. Il n’est fait aucune mention particulière aux notions de productivité, de management, d’innovation, d’éthique ou d’international qui sont pourtant à la mode un peu partout dans le monde. Les Français qui associent eux davantage « ingénieur » à un titre ou un statut (62%) pensent sans doute d’abord à l’ingénieur généraliste, d’où la nécessité de compléter sa définition par d’autres termes. L’idée de salaire, d’argent, associée à celle de pouvoir est présente dans quelques listes de mots commentaires, de même que le terme « cadre » dont la plupart des Latino-américains ignorent encore le sens tant il fait référence à un contexte typiquement français.

Mais revenons aux questions d’enseignement. En France, on constate que depuis les réformes de l’enseignement secondaire de 1995, les bacheliers français possèdent de fortes lacunes tant au niveau des connaissances que des raisonnements. [26] La dernière évaluation internationale « PISA 2006 » confirme d’autre part que les performances des jeunes Français en mathématiques ont subi un net recul depuis 2003.
Même si les résultats des pays d’Amérique Latine demeurent largement en deçà des moyennes observées dans l’Union Européenne, on observe une progression significative dans des pays comme le Brésil et surtout le Mexique. [27] Cela voudrait-il dire, que de même que nos étudiants latino-américains dans la filière Amerinsa, les responsables pédagogiques en Amérique Latine se posent peut-être davantage de questions sur les problèmes pédagogiques liés à l’apprentissage des mathématiques ?
Plus que les mathématiques elles-mêmes, c’est l’enseignement et les enseignants finalement qui sont souvent mis sur la sellette de nos jours. L’enseignement des mathématiques doit-il demeurer l’apanage des seuls mathématiciens ? Alors que des outils technologiques chaque fois plus sophistiqués permettent de développer des mécaniques calculatoires de plus en plus performantes, quelle part doit-elle revenir aux machines et aux techniques et que reste-t-il au traitement de l’intelligence, au raisonnement, au développement de l’esprit de géométrie et de l’esprit finesse chers à Pascal ?
Un groupe de réflexion sur la question, suscité récemment par la CTI, confirme que les savoirs fondamentaux garants des capacités de raisonnement et de la rigueur dont se réclame la formation d’ingénieur sont souvent abandonnés en France au profit des « mathématiques outils ». Les enseignements de type « recette » ne sont d’ailleurs parfois pas exercés par des professeurs de mathématiques mais par des enseignants ou des ingénieurs spécialistes de techniques utilisateurs de ces recettes. [28] Ce constat est fait également au Mexique où l’on déplore l’absence de formation pédagogique chez les enseignants, fréquente dans le secondaire, permanente dans l’enseignement supérieur. [29]
L’absence de plus en plus flagrante de maîtrise des bases mathématiques chez les étudiants des deux continents, induite par les programmes et l’organisation de l’enseignement, même si elle autorise un certain savoir-faire, ne donne plus le recul nécessaire aujourd’hui à l’appropriation des connaissances scientifique. C’est pourquoi aussi bien en France qu’en Amérique Latine de nombreux observateurs s’accordent à penser qu’il conviendrait de redonner aux mathématiques une place autre que celle des « mathématiques outils », d’autant plus que dans le futur, ces outils évolueront et que les ingénieurs diplômés n’auront pas la capacité de s’adapter en toute autonomie. [30]

L’expérience pédagogique que nous menons au sein de la filière internationale Amerinsa, de même que les réponses des étudiants au questionnaire, posent elles aussi le problème de la formation des enseignants.
D’après Eduardo Morelos, un ancien étudiant mexicain de la filière, devenu tuteur des élèves en difficulté, c’est l’apprentissage des mathématiques qui met à jour les différences les plus importantes entre les deux communautés dont il est question : S’il est vrai que les mathématiques sont considérées comme un langage universel, on s’aperçoit très vite que leur apprentissage est ancré dans un contexte culturel qui répond à des besoins sociaux spécifiques. [31] Les mathématiques sont en effet un produit culturel pouvant devenir ainsi une langue étrangère. En particulier, l’enseignement des mathématiques du premier cycle [INSA] est fortement axé sur l’utilisation de la démarche hypothético-déductive et prétend développer la réflexion de l’étudiant. Ceci contraste avec la démarche pragmatique utilisée dans les lycées de l’Amérique Latine. [32]
Notre tuteur mexicain énumère six niveaux de difficultés chez les étudiants latino-américains, liés selon lui à des facteurs socioculturels : l’utilisation de la langue française et du langage nécessaire aux mathématiques (il évoque, par exemple, la différence entre les verbes « vérifier » et « montrer ») ; la compréhension du cours en tant que texte et des symboles mathématiques utilisés ; la compréhension des tâches qui sont demandées par l’enseignant ; l’évaluation des attentes de son professeur, par exemple en ce qui concerne la rigueur au moment de la rédaction d’un devoir ; la compréhension des contenus du cours et notamment l’utilisation des théorèmes ; la formulation du raisonnement logique (par exemple, pourquoi une démonstration est-elle évidente ?).
En d’autre termes, selon Eduardo Morelos, pour qu’une véritable communication s’établisse entre l’enseignant de mathématiques et son élève, il faudrait d’abord que le professeur soit capable d’identifier le type de problème qui est en cause (pas nécessaire mathématique), et ensuite que l’étudiant soit en mesure d’exprimer le fond de sa pensée. [33] En définitive, conclut-il, on attend de l’adaptation de la part des étudiants étrangers, mais aussi de la part des enseignants.

Quelques pistes pour une conclusion à venir…
Bien entendu la recherche des facteurs socioculturels qui interviennent dans les représentations mathématiques chez nos étudiants français et étrangers est mue par des soucis d’efficacité pédagogique. Au cours des premières années de fonctionnement de la filière Amerinsa, le taux d’échec important des Latino-américains était attribué essentiellement à des questions d’adaptation à la langue française et aux exigences de l’apprentissage des mathématiques en école d’ingénieur. Des moyens supplémentaires ont été déployés au fil des ans pour résoudre les difficultés d’intégration de nos élèves. Le problème, c’est que nous avons surtout travaillé jusqu’à présent à un niveau fonctionnel et plus quantitatif que qualitatif, en nous préoccupant essentiellement des outils et des contenus de formation (traductions des polycopiés, mise en place de cours propédeutiques en amont de la filière, tutorats et cours de soutien, développement d’une plateforme numérique et multilingue d’apprentissage…) sans explorer suffisamment les origines du problème, les finalités de l’enseignement des mathématiques et les nécessaires adaptations des enseignants eux-mêmes.
Sans renoncer aux bénéfices des perspectives logico-structurelles qui facilitent l’acquisition de compétences indispensables en mathématiques, mais aussi au métier d’ingénieur (esprit de finesse et de géométrie, raisonner et acquérir des savoirs scientifiques et techniques, analyser et concevoir de systèmes complexes, expérimenter et innover…), d’autres pistes sont envisageables, notamment lorsqu’elles permettent davantage de placer l’étudiant au centre du processus d’apprentissage. Je souhaiterais être plus encadrée, la motivation personnelle est dure à trouver, se désole une de nos élèves françaises. Les cours en amphis me semblent inutiles : je ne fais que recopier .
Moi j’ai du mal à suivre les cours en TD et en amphi, reconnaît un étudiant latino-américain. Ce serait bien s’ils nous recommandaient un livre (pas de polycops). Je ne sais pas si c’est psychologique, mais un livre avec des couleurs me motive pour lire. Vous devriez regarder les livres américains de maths comme le « Steward Calculus », il est très pédagogique et différent des livres français.
A l’Institut National Polytechnique de Mexico, il semblerait que l’on s’intéresse à nouveau au « cognoscitivisme » et au « constructivisme » qui, d’après Patricia Camarena, postulent que pour apprendre, l’étudiant doit « construire » son propre apprentissage :
Depuis cette perspective le professeur est un guide dans l’apprentissage de l’élève. Cela signifie que ce n’est pas parce qu’un cours est très clair et que tout le monde comprend ce qui est dit, que l’étudiant a déjà compris. On a compris lorsqu’on est capable de faire les choses, pas seulement lorsqu’on comprend ce qu’on doit faire. [34]
En Amérique Latine tout comme en France, on explore différentes formes de pédagogie innovantes comme la pédagogie par projet ou la pédagogie inverse qui favorise l’indispensable autonomie, la transversalité des savoirs et les transdisciplinarités inéluctables pour appréhender la complexité du monde réel. Celle-ci est déjà à l’œuvre dans la Filière de Formation Active en Sciences (FAS) de l’INSA de Lyon qui accueille des bacheliers issus des filières techniques de l’enseignement secondaire français.
Le jeune Eduardo Morelos qui a vécu dans sa chair la difficulté de s’intégrer dans un système de formation à l’étranger mais qui a lu aussi Tseng et Newton [35] (problèmes d’ajustement psychologique des étudiants étrangers), Pedersen, Halamandaris, Power et Ward [36] (ajustements psycho-sociaux), a compris qu’il était nécessaire de prendre en compte dans toute pédagogie des difficultés liées au choc culturel, à la discrimination, à l’adaptation à des rôles, des normes ou des régulations différentes mais aussi au mal du pays, à la solitude, à la dépression, à la frustration, et à la perte d’identité et de statut. [37]
Car les étudiants latino-américains présents dans nos filières internationales de formation sont devenus à leur tour ce que l’historien uruguayen Carlos Rama appelait autrefois des « transplantés » en se référant aux jeunes intellectuels, enseignants ou professionnels qui quittaient déjà l’Amérique Latine au XIXe siècle pour venir s’installer en Europe, au moins pour quelques années. [38] Leur « déracinement » engendre également une phase d’ « acculturation » dont il nous faudrait apprendre à mesurer l’étendue et les conséquences.
L’expérience de ces dernières années nous incite également à nous pencher sur les questions liées à l’origine sociale très hétérogène de nos étudiants : on trouve dans la filière des étudiants boursiers issus de l’enseignement public secondaire d’Amérique, mais aussi des étudiants venus de certains établissements privés très élitistes.
Jacques Nimier nous rappelle enfin que la culture, c’est l’imaginaire, mais c’est aussi le symbolique, tout ce que la culture a inscrit en nous comme tiers ; c’est la langue que nous n’avons pas choisie mais qui nous relie aux autres, c’est le raisonnement (la logique) qui nous est commun avec les autres humains ; c’est le monde des signes, des codes, des lois qui structurent les groupes humains. La psychologie ou la psychanalyse évoquent en plus un réel irreprésentable, insoutenable, qui ne peut être mis ni en images, ni en symboles, ni exprimable par des mots. [39]
Selon Edgar Morin, l’enseignant ne voit que des représentations de la réalité, qu’il s’agisse de ses élèves ou de sa discipline, mais il ne peut pas voir pas les objets d’une façon objective car il n’a qu’une connaissance partielle de la réalité. La raison de leur non-objectivité vient selon lui du fait qu’ils ont en définitive une appréhension fantasmatique de leur réalité. [40]
S’il existe des facteurs socioculturels et émotionnels qui affectent les représentations mathématiques de nos étudiants, la référence à Edgar Morin nous permet d’ajouter qu’il existe finalement aussi différentes formes d’intelligence, spatiale (celle qui permet de voir en trois dimensions), linguistique (indispensable pour apprendre les langues), musicale (l’art de saisir la subtilité des sens), corporelle (l’intelligence des sportifs et des travailleurs manuels), logico-mathématique, intime (qui renvoie aussi au principe socratique de « connais-toi toi-même » ), sociale (la faculté de comprendre les autres), existentielle (la capacité à se poser des questions sur le sens de la vie), et quelques autres encore (intelligence pratique, gustative, ou ludique). On le voit, tout nous ramène toujours vers le complexe, et si le tout est dans les parties de même que les parties sont dans le tout comme disait Pascal, l’esprit est aussi dans le cerveau et les mathématiques sont partout.

L’un des objectifs de M²Real est de créer des masters communs avec les pays qui collaboreront à ce travail, masters qui permettront de réaliser des projets en formation et en recherche. Ces créations pérenniseront le caractère international de telles recherches, qui nous paraît très important.